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The stability of an incompressible swept attachment-line boundary layer flow is studied
numerically, within the Görtler–Hämmerlin framework, in both the linear and nonlin-
ear two-dimensional regimes in a self-consistent manner. The initial-boundary-value
problem resulting from substitution of small-amplitude excitation into the incom-
pressible Navier–Stokes equations and linearization about the generalized Hiemenz
profile is solved. A comprehensive comparison of all linear approaches utilized to
date is presented and it is demonstrated that the linear initial-boundary-value problem
formulation delivers results in excellent agreement with those obtained by solution of
either the temporal or the spatial linear stability theory eigenvalue problem for both
zero suction and a layer in which blowing is applied. In the latter boundary layer
recent experiments have documented the growth of instability waves with frequencies
in a range encompassed by that of the unstable Görtler–Hämmerlin linear modes
found in our simulations. In order to enable further comparisons with experiment
and, thus, assess the validity of the Görtler–Hämmerlin theoretical model, we make
available the spatial structure of the eigenfunctions at maximum growth conditions.

The condition on smallness of the imposed excitation is subsequently relaxed and
the resulting nonlinear initial-boundary-value problem is solved. Extensive numerical
experimentation has been performed which has verified theoretical predictions on
the way in which the solution is expected to bifurcate from the linear neutral loop.
However, it is demonstrated that the two-dimensional model equations considered do
not deliver subcritical instability of this flow; this strengthens the conjecture that three-
dimensionality is, at least partly, responsible for the observed discrepancy between the
linear theory critical Reynolds number and the subcritical turbulence observed either
experimentally or in three-dimensional numerical simulations. Further, the present
nonlinear computations demonstrate that the unstable flow has its line of maximum
amplification in the neighbourhood of the experimentally observed instability waves,
in a manner analogous to the Blasius boundary layer. In line with previous eigenvalue
problem and direct simulation work, suction is observed to be a powerful stabilization
mechanism for naturally occurring instabilities of small amplitude.

1. Introduction
An attachment line is formed on the windward surface of any cylindrical object

immersed in fluid flow at an angle, as schematically depicted in figure 1. At Reynolds
numbers typically encountered in flows of technological importance laminar flow
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Figure 1. Schematic representation of leading edge boundary layer flow.

in the boundary layer formed in the vicinity of such an attachment line has been
observed to support instability waves, akin to the Tollmien–Schlichting waves found
in the classical Blasius flow. The growth in space, or time, of these instability waves
can lead to transition and turbulence. It is clear that turbulence originating in the
attachment-line boundary layer will propagate into the flow away from the plane
defined by the attachment line and the wall normal. This feeding of the boundary
layer off the attachment line, with turbulent flow originating at the attachment line
itself, renders ineffective any of the classical means of laminar flow control which focus
on crossflow instability away from the attachment line. It was indeed puzzling for the
investigators of pioneering swept wing configurations that, although measures had
been taken to control the powerful, inviscid in nature, crossflow instability, laminar
flow over swept wings could not be maintained (Lippisch 1976 and references therein;
Horten & Selinger 1983 and references therein; Gray 1952).

Our understanding of incompressible swept attachment-line boundary layer (here-
after also referred to as leading-edge boundary layer, LEBL) instability has advanced
somewhat since the early days (Reed, Saric & Arnal 1996). Significant contributions
were made by the experimental investigations at the National Physical Laboratory
and the College of Aeronautics in Europe and at Northrop in the United States.
Gaster (1967) summarized the former; he was the first to appreciate that one of the
ways for turbulent flow to enter the attachment-line boundary layer on a swept wing
is through the wing–body junction. Gaster suggested the use of a device, placed in the
wing-root area, which would locally decelerate the part of the flow which was about
to enter the attachment-line boundary layer (Gaster 1965). If originally turbulent,
the flow would undergo reverse transition and the boundary layer in the attachment
line itself would (potentially) thus be kept in a laminar state. Pfenninger & Bacon
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(1969), on the other hand, were the first to detect the existence of naturally occurring
sinusoidal instability waves in the attachment-line boundary layer formed on the
windward surface of a 45o swept cylinder. These investigators went on to document,
to the benefit of later theoretical work, the conditions of maximum spatial growth of
these waves.

The early experimental work was revisited by Poll (1979) whose experiments paved
the way for the theoretical developments that followed. It was first established that
attachment line and crossflow are two distinct instability mechanisms, viscous and
inviscid, respectively, in nature. The latter is operative off the attachment line, at
locations where the relative direction of the inviscid and the limiting streamlines
supports a (small) three-dimensional component in the basic flow (Poll 1985). This
crossflow results in the total basic flow profile acquiring an inflection point which
gives rise to a powerful inviscid instability mechanism, the signature of which is
the well-known crossflow vortices (Gregory, Stuart & Walker 1955; Reed & Saric
1989). Instability waves naturally occurring at the attachment line itself, on the other
hand, were found to occur largely at the conditions that the earlier investigators had
suggested. The conditions for their existence were documented and compiled into
engineering criteria for the determination of the state, laminar or turbulent, of the
LEBL under given conditions. The results of Poll were corroborated through and
supplemented by the experiments performed in parallel at ONERA/CERT by Arnal
and co-workers (Arnal, Coustols & Jullien 1984; Arnal 1993).

Linear instability, along the classic lines developed by Tollmien and Schlichting for
the Blasius boundary layer, was considered responsible for the waves observed in the
swept attachment-line boundary layer. Based on the analogies between the (stream-
wise) Blasius flow and the component of the LEBL basic flow along the leading edge,
Poll (1979) used the latter as input to the Orr–Sommerfeld (OS) equation, neglecting
the essential three-dimensionality of the LEBL basic flow profile. This mathematical
inconsistency resulted in asymptotic agreement between experimental results and nu-
merical solutions to the OS equation being obtained only at the limit of increasingly
large Reynolds number. The question of a linear critical Reynolds number could
thus not be addressed. Hall, Malik & Poll (1984) derived and solved a formally
consistent system of linear stability equations for the flow under consideration. They
incorporated the Görtler–Hämmerlin (GH) assumption for the small-amplitude per-
turbation velocities (Görtler 1955; Hämmerlin 1955) and pointed out that there is no
rational means of reduction of the resulting LEBL linear stability system to the OS
equation. Hall et al. proceeded to solve the temporal eigenvalue problem, calculating
a linear critical Reynolds number that compared better than that corresponding to
solution of the OS equation with experimental results obtained under conditions
favouring growth of small-amplitude perturbations. Monitoring the analogies in the
spectra of the OS equation (Grosch & Salwen 1978) and the LEBL system Theofilis
(1995) has recently demonstrated analytically the observed asymptotic agreement be-
tween the results of the OS equation applied to the attachment-line boundary layer
(Poll 1979) and the large Reynolds number limit of the LEBL system of Hall et al.
(1984).

Floryan & Dallmann (1990) used linear theory incorporating the GH assumption
in their receptivity analysis of LEBL flow with distributed surface roughness. They
demonstrated that roughness generates steady streamwise vorticity, but the roughness
itself may be eliminated by the surface stresses generated if surface erosion or wall
flexibility is admitted. Further, Floryan & Dallmann showed that large thermal
stresses generated by the concentration of heat flow at the tips of the roughness along
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the leading edge may cause structural damage to the leading edge surface itself. This
work concentrated on a small neighbourhood of the attachment line and the first term
in a series expansion which describes streamwise-varying roughness in the vicinity of
the attachment line.

Linear instability is by no means the only route to transition to turbulence in
attachment-line boundary layer flow. While the aforementioned combined theoretical
and experimental efforts have established a linear critical Reynolds number Re ≈ 583,
sustained turbulence in LEBL flow has been documented experimentally at Reynolds
numbers as low as Re ≈ 235 (Poll 1979). Instead of attributing the residual discrep-
ancies between experimental results and the Hall et al. theory regarding the critical
Reynolds number to unquantifiable by-pass mechanisms (Morkovin & Reshotko
1989), Hall & Malik (1986) applied weakly nonlinear analysis along the lines of the
Stuart–Watson theory (Stuart 1960; Watson 1960) to study the behaviour of LEBL
flow past the stage of linear instability. Their theory predicted that this flow may be
destabilized at a subcritical Reynolds number by finite-amplitude disturbances; nu-
merical solutions to the initial-boundary value problem indeed yielded a critical value
of Re ≈ 535. A first step towards bridging the gap between experimental observations
and theoretical predictions was thus provided.

Hall & Seddougui (1990) analysed the interaction of oblique waves with the unstable
linear two-dimensional modes of the LEBL system using triple-deck theory (see e.g.
Duck & Burggraf 1986) and monitoring both the linear and the weakly nonlinear
regimes of perturbation. Hall & Seddougui demonstrated that in the immediate
vicinity of the attachment line both low-frequency oblique modes and modes whose
frequency is comparable to that of the unstable two-dimensional wave may cause
breakdown of LEBL flow. The discussion of these oblique modes was only possible
at the high Reynolds number limit in order for the analytical tools utilized to be
applicable. It is, nevertheless, clear that the three-dimensional instability discovered
has the potential to destroy the two-dimensional nonlinear equilibrium solutions of
Hall & Malik.

Numerical simulations of LEBL flow started in the mid 1980s and have played an
increasingly important role in shaping our understanding of the instability mecha-
nisms involved. Spalart (1988) presented the first direct numerical simulation (DNS)
results of three-dimensional LEBL flow. A number of significant results of this work
merit discussion. Most importantly, Spalart’s work did not use a priori the GH
assumption. At conditions that permitted linear growth, according to the earlier theo-
ries, Spalart demonstrated, to within numerical tolerance, that the linear perturbations
indeed assumed the form that Görtler and Hämmerlin had proposed “for reasons of
mathematical convenience”. From a numerical point of view Spalart’s DNS results
were obtained by imposing what is now described as a buffer-domain approach in
the (chordwise) direction of strong acceleration of the flow. In so doing the flow was
permitted to develop off the attachment-line vortical structures reminiscent of those
observed experimentally. The homogeneous spanwise direction, along the attachment
line, was taken to be periodic. Further, the three-dimensionality of the full system of
equations considered permitted breakdown to turbulence which could be maintained
at Re ≈ 260. A suggestion of this observation is that the search for subcriticality in
the present flow should move away from linear mechanisms. Starting from a turbulent
flow field Spalart was able to demonstrate relaminarization of the flow by lowering
the Reynolds number or by applying suction. The unswept limit of LEBL flow was
found to be linearly and nonlinearly stable, in line with the analytical prediction
of Wilson & Gladwell (1978). In a number of three-dimensional runs performed,
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however, Spalart (1988) found no evidence of the nonlinear equilibrium solutions
that the two-dimensional model equations considered by Hall & Malik (1986) were
reported to produce.

Jiménez et al. (1990) considered numerically the two-dimensional limit of LEBL
flow, subject to the GH assumption. Performing numerical experiments they concluded
that the two-dimensional flow does not support subcritical solutions. Jiménez et al.
put forward the suggestion that three-dimensional mechanisms are responsible for
the observed subcriticality. The absence of two-dimensional nonlinear equilibria in
the simulations of Spalart (1988) may, conceivably, be attributed to the difficulties
in comparisons between results delivered by the three-dimensional code of Spalart
and those that the two-dimensional GH code of Hall & Malik (1986) yields. The
result of Jiménez et al. (1990) on subcriticality, however, is in direct contradiction
with that of Hall & Malik (1986), who considered the same model equations; the
issue of nonlinear subcritical solutions of the two-dimensional model equations has,
thus, been left open.

Joslin (1995) studied three-dimensional instabilities in the LEBL region using
DNS. In contrast to the work of Spalart (1988) Joslin treated the spanwise direction
spatially. In so doing he compared DNS results with spatial linear theory along
the attachment line and reported satisfactory agreement being obtained. However,
Joslin imposed homogeneous Dirichlet or Neumann boundary conditions on the
perturbations in the chordwise direction. He reported that use of these boundary
conditions in the direction of flow acceleration, which are inherently restrictive in the
form of perturbations that they permit to grow, does not alter the stability results
obtained at the attachment line provided that the chordwise extent of the integration
domain (resolved by 25 Chebyshev polynomials) is taken to be large enough. Joslin
went on to assert that his DNS revealed the nonlinear equilibria predicted by the
analysis and computation of the two-dimensional initial-boundary-value problem of
Hall & Malik (1986).

Theofilis, Duck & Poll (1989) and Theofilis (1993) demonstrated that formulation of
the two-dimensional LEBL flow as an initial-boundary-value problem and lineariza-
tion about the generalized Hiemenz profile yields results analogous to those delivered
by the eigenvalue problem considered by Hall et al. (1984); we expand upon this point
herein. Further, it was shown that linear disturbances in the two-dimensional LEBL
flow respond to suction of the boundary layer in the manner predicted by the eigen-
value problem in Hall et al. and also demonstrated in the three-dimensional DNS of
Spalart. The neglect of self-interaction of perturbations in Theofilis (1993), however,
prohibited addressing the question of subcriticality and the apparently contradictory
results in the literature; this is one of the topics on which we focus here.

As already discussed, the magnitude of the discrepancy in the critical Reynolds
numbers delivered by linear and weakly nonlinear theory on one hand, and the lowest
Reynolds number at which turbulence has been observed in experiments and DNS on
the other, suggests that mechanisms beyond those described by linear theory must be
studied. It is interesting, in this respect, to define the point of departure of new theo-
retical efforts, in particular with respect to nonlinearity and three-dimensionality. The
present contribution focuses on this question by addressing the nonlinear evolution
of linear instability waves which are subject to the GH assumption. Aside from the
motivation for a new initial-boundary-value problem study† provided by the apparent

† The terms initial-boundary-value problem and DNS are used interchangeably in the context of
the present nonlinear calculations, as are the terms eigenvalue problem and linear stability theory.
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inconsistencies in the literature on the issue of subcritical instability and its relation
to breakdown to turbulence in LEBL flow, new experimental results (Poll, Danks &
Yardley 1996) provide the opportunity to make further assessments of the validity of
the GH model as a departure point for future theoretical studies. The assumptions
made herein are in line with those made by Hall & Malik (1986) and Jiménez et al.
(1990); conclusions are based, of necessity, on the results of a large but finite number
of numerical experiments performed under a variety of initial conditions.

It should be clear at this point that the only safe conclusions on the existence
of nonlinear subcritically growing solutions, based on the results of a finite number
of nonlinear runs utilizing arbitrary forms and amplitudes of perturbations, are the
affirmative ones. Absence of such solutions, on the other hand, cannot guarantee
that they do not exist; it may well happen that the choice of parameters in the
runs performed delivers solutions outside the basin of attraction of a potentially
existing subcritically unstable solution. A safer approach to identify the latter is to
map the nonlinear neutral surface of stable travelling waves; although this procedure,
in conjunction with the solution of an eigenvalue problem, is well established in
stability analysis (Herbert 1977; Koch 1992) it has only been attempted for the
present problem in the DNS of Jiménez et al. We further note that a treatment of the
stability problem of the present constant-thickness (spanwise) boundary layer using
parabolized stability equations (Bertolotti 1991) on the attachment-line plane, is not
expected to deliver improved results compared to those that the spatial eigenvalue
problem (Theofilis 1995) yields.

The paper is structured as follows. We solve in §2 the eigenvalue problem using
a different formulation of the equations to that used for the initial-boundary value
problem and an alternative, inherently more accurate numerical treatment to those
used in the past, namely spectral (Chebyshev) collocation. Spatial eigenvalue prob-
lem and Gaster-transformed temporal eigenvalue problem and initial-boundary-value
problem results are compared amongst themselves and with experimentally available
results. The temporal eigenvalue problem solution provides us with independently
obtained information on the eigenspectrum; this is utilized in the nonlinear com-
putations that follow in §3. Realistic forcing functions are considered and a large
integration domain is utilized such that (a) a zero perturbation boundary condition
may be imposed in the far field and (b) at least one subharmonic of the unstable
fundamental wavenumber is included in the simulation. Results of relevance to the
physical problem are presented and analogies with the Blasius boundary layer are
discussed. Concluding remarks are furnished in §4.

2. The linear problem revisited
2.1. The generalized Hiemenz boundary layer

Some introductory presentation of the physical problem is in order at this point. The
geometry of the flow under consideration is depicted in figure 1. The assumption
is made that the basic flow over the leading edge of an infinite swept cylinder
may be treated as locally flat, which stems from the largeness of the free-stream
Reynolds number (Goldstein 1938). The oncoming flow Q∞ outside the boundary
layer is taken to be a stagnation-line flow comprising components (U∞, V∞,W∞) in
the streamwise (chordwise) x, normal y and spanwise z directions respectively; the
latter, homogeneous, direction has been treated as periodic. No physical length scale
exists in this boundary layer; with the aid of the chordwise component of velocity Ue,
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evaluated at the boundary layer edge, the local strain rate of the flow S = (dUe/dx)x=0

and the viscosity ν, a length scale constructed as ∆ = (ν/S)1/2. Since Ue is taken to

depend linearly on x in what follows, ∆ will be defined here as ∆ = (νL/Ue)
1/2

, with
L an O(1) length. The Reynolds number Re of this constant-thickness boundary layer
flow, customarily denoted by R̄, is Re = We∆/ν. The relation Rθ ≈ 0.404Re links the
momentum-thickness Reynolds number Rθ to Re, if no suction is applied.

In the absence of any disturbance, the basic flow is taken to be of the form

U = S x ū(y) ; V = S ∆ v̄(y) ; W = Re S ∆ w̄(y) = We w̄(y).

Substituting this structure into the incompressible Navier–Stokes equations a system
of ordinary differential equations results for the determination of the basic-flow
velocity vector (ū, v̄, w̄)

ū+ v̄′ = 0, (2.1)

v̄′′′ +
(
v̄′
)2 − v̄ v̄′′ − 1 = 0, (2.2)

w̄′′ − v̄ w̄′ = 0, (2.3)

subject to the boundary conditions

v̄(0) = κ; v̄′(0) = 0; v̄′(∞) = −1,

w̄(0) = 0; w̄(∞) = 1.

Here a prime denotes differentiation with respect to the LEBL variable η = y/∆
and κ is a non-dimensional parameter used to control suction in the boundary layer.
This reduced form of the Navier–Stokes equations represents a generalization of the
well-known Hiemenz flow (Hiemenz 1911) in that, in addition to the plane stagnation-
point flow, it incorporates a non-zero spanwise velocity component. It is well known
that stability results are highly sensitive to the accuracy of the basic profile. Two
alternative approaches were employed for the calculation of the latter. Equation (2.2)
is of the Falkner–Skan class and accurate solutions to this problem may be obtained
efficiently by spectral collocation based on Chebyshev polynomials (Streett, Zang &
Hussaini 1984). Spectral integration operations (Pruett & Streett 1991) may then be
applied to equations (2.1) and (2.3) in order to calculate the streamwise and spanwise
basic flow components. Using this approach the need for interpolation between grids
in subsequent stability calculations, a potential source of errors creeping in the
numerical solution, is eliminated. Alternatively, a straightforward shooting technique
may be employed to solve (2.1)–(2.3) in order to obtain the basic flow velocity profile
for different values of the suction parameter κ. If this approach is used the result
must be obtained on a large number of nodes in order to minimize the interpolation
errors. Both approaches have been used and the numerically obtained results were
found to be in excellent agreement with the profiles given, for example, by Rosenhead
(1963).

Quantities significant from an engineering point of view, such as shape factor and
skin friction of the (zero-suction) generalized Hiemenz flow assume the values H =
2.54 and cf = 0.461/Rθ , as opposed to H = 2.59 and cf = 0.664/Rθ , respectively, for
Blasius flow (Arnal 1993). Furthermore, the spanwise velocity profile of the generalized
Hiemenz flow resembles closely the streamwise Blasius one. These analogies led to
the application of the Orr–Sommerfeld equation in the early theoretical studies of
the stability of the LEBL problem. From a mathematical point of view a significant
difference between the flat-plate boundary layer and the infinite swept attachment-line



200 V. Theofilis

boundary layer is that the basic flow in the former is typically obtained by application
of boundary layer theory, namely implicit assumption of large Reynolds number; the
basic flow of the incompressible LEBL on the other hand is an exact solution to
the Navier–Stokes equations. As a consequence, the stability analysis and the search
for an O(1) critical Reynolds number in the latter flow, unlike the former, may be
performed in a self-consistent framework.

2.2. The perturbed flow

For completeness we present next the equations governing the initial-boundary-value
problem to be solved. These result from substitution of the decomposition, due to
Görtler (1955) and Hämmerlin (1955),

u = S x {u+ Re û E}, (2.4)

v = We

{
v

Re
+ v̂ E

}
, (2.5)

w = We {w + ŵ E}, (2.6)

with E = ei(βz−ωt), into the velocity–vorticity form of the Navier–Stokes equations.
In the temporal framework considered the real spanwise wavenumber, denoted by β,
and the complex ω and c are related by the relationship ω = βc. Physical significance
is attached to the real part of ω which indicates frequency, while the imaginary part
of ω is the growth rate. The rotational form of the Navier–Stokes equations was
selected since, firstly, complications arising from the pressure treatment in primitive
formulation are circumvented and, secondly, because this form is readily extendible
to three dimensions.

If (ξ̄, η̄, ζ̄) is the basic flow vorticity vector, (û, v̂, ŵ) is the velocity vector of the per-

turbed flow and (ξ̂, η̂, ζ̂) that of the perturbation vorticity, the perturbation equations
are

∂2û∗

∂y2
− β2û∗ − iβη̂∗ − ∂ζ̂∗

∂y
= 0, (2.7)

∂2v̂∗

∂y2
− β2v̂∗ + iβξ̂∗ + ζ̂∗ = 0, (2.8)

∂2ŵ∗

∂y2
− β2ŵ∗ + η̂∗ − ∂ξ̂∗

∂y
= 0, (2.9)

Re−1

{
∂2ξ̂∗

∂y2
− β2ξ̂∗

}
− ∂ξ̂

∗

∂t
−v̄ ∂ξ̂

∗

∂y
−v̂∗dξ̄

dy
−iβw̄ξ̂∗ +ūξ̂∗ +ξ̄û∗ = (RHS1)∗, (2.10)

Re−1

{
∂2η̂∗

∂y2
− β2η̂∗

}
− ∂η̂

∗

∂t
− v̄ ∂η̂

∗

∂y
+ η̂∗

dv̄

dy
−iβw̄η̂∗− ūη̂∗−iβū

′
v̂∗ = (RHS2)∗, (2.11)

Re−1

{
∂2ζ̂∗

∂y2
− β2ζ̂∗

}
− ∂ζ̂∗

∂t
− v̄ ∂ζ̂

∗

∂y
− v̂∗dū

′

dy
− iβw̄ζ̂∗

−ūζ̂∗ − ū′ û∗ + iβū
′
ŵ∗ − dw̄

dy
η̂∗ = (RHS3)∗, (2.12)

where a star superscript denotes a spectral (Fourier) space coefficient and RHS1–
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RHS3 are the quadratic right-hand sides to the equations, which read

RHS1 = v̂
∂ξ̂

∂y
+ ŵ

∂ξ̂

∂z
− ξ̂ û, (2.13)

RHS2 = v̂
∂η̂

∂y
+ ŵ

∂η̂

∂z
+ û η̂ − η̂

∂v̂

∂y
+ ζ̂

∂v̂

∂z
, (2.14)

RHS3 = v̂
∂ζ̂

∂y
+ ŵ

∂ζ̂

∂z
+ û ζ̂ + η̂

∂ŵ

∂y
− ζ̂

∂ŵ

∂z
. (2.15)

The nonlinear terms are set identically equal to zero in the linear version of the
code, to be reinstalled for mode-interaction studies. It is worth noting that, in view
of the GH assumption, the x-dependence of this system has been eliminated. This
confines the study to two dimensions and prohibits following the flow into turbulence.
No-slip boundary conditions for the x- and z-components of the velocity are imposed
and the definition of vorticity is used to derive boundary conditions for the vorticity.
The normal-perturbation velocity component will be utilized to force the calculations
in a manner which will be described later. Taking the far-field edge of the integration
domain at a long distance from the wall, we impose vanishing of the perturbations
at y = y∞. For linear computations in the neighbourhood of Branch II, in view of
the far-field behaviour of the perturbations, we use y∞ = 25; otherwise y∞ > 50 is
chosen. Computations are performed in boxes of variable spanwise extent, a typical
combination of minimum spanwise wavenumber value and number of nodes utilized
in this direction being βmin ≈ 4.5× 10−3 with Nz = 256.

2.3. Spectral collocation solutions to the eigenvalue problem

The results of the temporal eigenvalue problem formulated and solved by Hall
et al. (1984) have been reproduced by Theofilis (1993) using the linear perturba-
tion limit of (2.7)–(2.12). The solution approach utilized in the latter work was
essentially the same as that used for the linear initial-boundary-value problem, al-
though time was treated as a parameter. Second-order-accurate finite differences on
a uniform grid were used in the wall normal. Theofilis (1995) presented a direct
global spatial solution of the eigenvalue problem which permits the imposition of
a variety of boundary conditions at infinity, including those of exponential decay
that all eigenvalue problem work to date has utilized. Here, we proceed to ob-
tain a solution to the temporal eigenvalue problem presented by Hall et al. (1984)
utilizing the spectral collocation algorithm used for the spatial problem. Thus com-
parisons are possible between the linear initial-boundary-value problem results and
those of a solution of the eigenvalue problem, although they are obtained using
different numerical discretization algorithms and grids. The quality of the initial-
boundary-value problem solution and, implicitly, its ability to address the question
of nonlinear development of the linear GH solutions may thus be assessed. Fur-
ther, we address the crucial question of the relevance of the GH linear theory to
experimental results by use of the temporal-to-spatial transformation (Gaster 1962)
of our temporal numerical results. On these we superimpose the spatial linear re-
sults of Theofilis (1995) and the new experimental data of Poll et al. (1996). A
full account of the comparisons of the eigenvalue problem solutions and the afore-
mentioned experimental results is currently in preparation and will be reported
separately.
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The eigenvalue problem may be expressed in terms of the streamwise û and normal
v̂ perturbation velocity components by the following system:{

D2 − vD− β2 − 2u− iβRew
}
û− (Du) v̂ = −iβRe c û, (2.16)

{2 (Du) + 2uD} û +
{
D4 − vD3 +

[
−2β2 − iβRew − (Dv)

]
D2

+
[
β2v + (Du)

]
D+ β4 + iβ3Rew + iβRe

(
D2w

)
+ β2 (Dv) +

(
D2u

)}
v̂ = −iβRe c

{
D2 − β2

}
v̂, (2.17)

with D = d/dη and η defined in §2.1. The boundary conditions associated with this
system are zero perturbations at the wall η = 0, while in the far field we may impose
vanishing of perturbations, at sufficiently large a distance from the wall, or utilize the
asymptotic form of the equations in this limit. Hall et al. (1984) demonstrated that
the proper rate of decay for the perturbations in the far field is imposed if

η →∞ : û ∼ e−η
2/2, v̂ ∼ e−βη.

In the results that follow both options have been used and it was found that im-
position of zero perturbations at a large finite distance yields eigenfunctions with the
asymptotic behaviour shown above. Hall et al. (1984) solved this problem using a com-
pact finite-difference scheme and it is desirable to obtain the solution to (2.16)–(2.17)
using a different numerical approach. Here we solve the eigenvalue problem using
spectral collocation based on Chebyshev polynomials. Orszag (1971) demonstrated
that a Chebyshev-tau approach is ideally suited to tackle hydrodynamic stability
problems. The first spectral collocation solution to temporal eigenvalue problems
pertinent to the (compressible) Navier–Stokes equations to appear in the literature
was the work of Macaraeg, Streett & Hussaini (1988). There it was shown that a
collocation approach also yields highly accurate frequency and growth rate results
at a minimal number of nodes compared to standard finite-difference discretizations.
Moreover, in the incompressible limit a very small number of nodes guaranteed a
converged solution to within very small tolerance. Utilization of as small as possible a
number of nodes is necessary in solving the generalized eigenvalue problem globally,
given the cost of the QZ algorithm invariably used for this type of problem (Wilkin-
son 1965) which scales with the cube of the number of nodes utilized. The system
(2.16)–(2.17) takes the form of a generalized eigenvalue problem for the determination
of the eigenvalue c once a prescription for the discrete approximation of the derivative
D has been provided. We combine domain truncation with mapping and incorporate
the metrics of the transformation into the standard Chebyshev collocation derivative
matrices in order to form approximations to the first four derivatives required in
(2.16)–(2.17). Some details of the solution method are presented in Appendix A.

Eigenvalue problem results have been obtained for a number of values of the
suction parameter, although in the nonlinear computations that follow only those
pertinent to zero suction will be utilized. In figure 2 the neutral curves for κ = −0.1, 0
(0.2) 0.8 are presented in (Re, β) space. Superimposed is the (graphically reproduced)
result for the zero-suction neutral loop presented by Hall et al. (1984). Line-thickness
agreement may be seen between the neutral loop of Hall et al. and the present result.
In table 1 we present our grid refinement history for the complex eigenvalue at the
neutral conditions of Hall et al.; using the aforementioned global spectral algorithm
and 64 Chebyshev collocation nodes the discrepancy between the results of Hall
et al. and our calculations is less than 1× 10−6, the former investigators having used
160 points in their iterative finite-difference solution to predict a neutral frequency
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Figure 2. The temporal eigenvalue problem neutral loops in (Re, β) space. Inner to outer loop
corresponds to suction parameters κ = −0.1, 0, (0.2), 0.8. Superimposed upon the κ = 0 result and
denoted by ‘o’ the zero suction result of Hall et al. (1984).

κ = 0, Re = 800 κ = 0.18, Re = 350
N ωr ωi ωr ωi

16 0.131390 −0.000357 0.125923 0.003497
32 0.127072 −0.000024 0.125446 0.002515
64 0.127098 0.000000 0.125442 0.002509

Table 1. Grid refinement history in the numerical solution of the temporal eigenvalue problem at
κ = 0, Re = 800, β = 0.3384638 (compact finite-difference result (Hall et al. 1984) βcr = 0.1270977)
and at κ = 0.18, Re = 350, β = 0.3053125 (Poll et al. 1996).

of cr = 0.3755134. For comparison with recent experimental results of Poll et al.
(1996) in table 1 we also present the convergence history of the temporal growth
rate of the maximally amplified wave at Re = 350, κ = 0.18; at these parameters
the boundary layer has a displacement thickness δ∗ = 1.143159 and a momentum
thickness θ = 0.432980. The wavenumber of the most unstable wave, β = 0.3053125,
was determined by cubic spline interpolation of the β vs. ωi linear theory result. It
may be seen in these results also that 64 collocation points are sufficient for converged
frequency and growth rate results to be obtained. The spatial structure of the û and
v̂ eigenfunctions at zero-suction critical conditions Re = 583.1, β = 0.288 (Hall et al.
1984) is presented in figures 3(a) and 3(b) for the normalized û and v̂ respectively.
Worth noticing in this figure is the rate of decay of perturbations at infinity, which is
characteristic of incompressible boundary layers; this result will be taken into account
in the direct numerical simulations that follow.

2.4. Convergence of the DNS results and comparison with linear stability theory

Direct numerical simulations of flat-plate boundary layers, either incompressible
(Laurien & Kleiser 1989) or compressible (Adams 1993), have established that a
minimum prerequisite for credibility of (nonlinear) DNS results is the reproduction
by DNS of the frequency and growth rate results of linear stability theory. Here,
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Ny y2 × 100 ωr ωi

51 1.215 0.125567 0.002408
101 0.601 0.125450 0.002485
151 0.399 0.125447 0.002498
201 0.299 0.125441 0.002503
251 0.239 0.125443 0.002505
301 0.199 0.125442 0.002506
351 0.171 0.125439 0.002507
401 0.149 0.125434 0.002507

Table 2. Grid refinement in the numerical solution of (2.7)–(2.15) at κ = 0.18, Re = 350,
β = 0.3053125.

we subject our nonlinear initial-boundary-value problem code for the incompressible
attachment-line boundary layer to this test. A comment is in order at this point on
the means by which linear stability theory information is extracted from the time-
dependent DNS results. During linear growth the exponential time behaviour of the
solution is utilized either explicitly or in terms of a logarithmic derivative of any flow
quantity; three alternatives have been used to recover the results that follow which,
at convergence, are identical to each other. Details may be found in Appendix B.

The grid sequencing at conditions chosen to correspond to the κ = 0.18 boundary
layer presented in table 1 may be found in table 2. Shown are the number Ny of
the non-uniformly distributed finite-difference points in the wall-normal direction,
the location of the first point off the wall y2 and the frequency ωr and growth
rate ωi during linear growth, calculated using method 2 described in Appendix B.
Convergence of the fourth decimal place may be seen to have been achieved in the
DNS results at Ny > 200. As an aside, on the technical level, one notices a further
demonstration of the well-known fact in transition simulation that finite-difference
types of methods typically require an order of magnitude larger number of points
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Figure 4. Linear eigenfunctions at κ = 0.18, Re = 350, β = 0.3053125 predicted by DNS (solid)
and their comparison against the linear stability theory result. Symbol +: real part; symbol ×:
imaginary part.

to achieve the converged result compared with that needed by a spectral simulation.
The overall cost of the algorithm in two dimensions, however, is determined by the
cost of inverting the matrix in which the discrete form of the governing equations is
cast; in this respect the significantly lower cost of inverting the banded matrix which
results from a finite-difference discretization compared to that of inverting the dense
matrix resulting from a spectral method may compensate for the additional number
of nodes utilized in the former scheme.

The result of major significance, though, is the agreement between the linear
theory result presented in table 1 and the converged direct simulation result of
table 2. Against a background of different systems of equations being solved, using
a spectral method for the eigenvalue problem as opposed to finite differences in the
DNS, and the grids on which the respective solutions have been obtained being
different, the relative discrepancy between the frequency and growth rate delivered
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by the eigenvalue problem and the respective converged DNS result is less than
0.01% for the frequency and 0.1% for the growth rate. The spatial structure of the
disturbance vector obtained at this wavenumber parameter is presented in figure 4.
Solid lines denote the normalized DNS result for the real and imaginary parts of
velocity and vorticity Fourier coefficients upon which the respective normalized real
(+) and imaginary (×) parts calculated by solution of the eigenvalue problem are
superimposed. Numerical solution of the eigenvalue problem delivers the chordwise û
and normal v̂ disturbance velocity components as the eigenvector; we post-calculate
the spanwise disturbance velocity component ŵ using the equation of continuity for
this flow

û+Dv̂ + iβŵ = 0,

and the three vorticity components using the definition of disturbance vorticity

ξ̂ = Dŵ − iβv̂, η̂ = iβû, ζ̂ = −Dû.

Aside from the agreement between linear stability theory and DNS results which
corresponds to that exhibited by the frequency and growth rate results, a number of
other points are worthy of mention in this figure. First, the spanwise disturbance ve-
locity component has the typical structure of a Tollmien–Schlichting instability prop-
agating in the streamwise direction in the two-dimensional Blasius boundary layer.
It is this fact which led investigators in the past to attempt to use the non-rationally
obtained Orr–Sommerfeld equation to describe instability along the spanwise direc-
tion in the attachment-line boundary layer. Second, a comparison of the rates of
decay of the normal velocity component in the far field, for which homogeneous
boundary conditions have been imposed in our DNS, confirms the prediction of Hall
et al. (1984) regarding the rate of decay utilized in their eigenvalue problem solution.
Third, credibility is given to the numerical treatment of (2.7)–(2.15) with respect to
the boundary conditions on vorticity, an issue which has been extensively discussed
in the past in the context of incompressible direct numerical simulations; utilizing
the definition of vorticity to derive boundary conditions for its three components
delivers results which show excellent agreement with those obtained by numerical dif-
ferentiation of the eigenvalue problem results. The wall-normal disturbance vorticity
component is predicted to be a multiple of the chordwise disturbance velocity com-
ponent, while the chordwise and spanwise disturbance vorticity components delivered
by DNS have wall values that agree with those predicted by the eigenvalue problem
to the same high accuracy as the respective eigenvalues.

Next we monitor the agreement between DNS results and linear theory at different
parameter values. In table 3 we present comparisons at two further representative
Reynolds number values, one at which the flow is linearly unstable, Re = 800, and one
in the middle of the disputed linearly subcritical region, Re = 550. DNS results were
obtained at the modest wall-normal resolution which was found to deliver acceptable
accuracy, Ny = 251. The comparisons of DNS with the linear theory results at all
parameter values attempted was found to be as favourable as that presented at
maximum growth conditions in the Re = 350, κ = 0.18 boundary layer. In the latter
flow one sees in table 3 that the region of instability delienated by DNS is that which
the eigenvalue problem predicts and the small-amplitude linear waves resulting from
the simulations are identical to those that may be calculated using linear theory.
An analogous conclusion on both the location of the branches of the neutral loop
and the values of frequency and growth rate may be drawn for the linearly unstable
Re = 800. Small-amplitude disturbances at Re = 550, on the other hand, are found
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Re = 350, κ = 0.18
DNS LST

β ωr ωi ωr ωi

0.15625 0.054865 −0.003462 0.054886 −0.003444
0.18750 0.069076 −0.001568 0.069087 −0.001550
0.21875 0.083677 0.000163 0.083683 0.000168
0.25000 0.098574 0.001487 0.098578 0.001498
0.28125 0.113692 0.002297 0.113695 0.002304
0.31250 0.128958 0.002491 0.128962 0.002495
0.34375 0.144300 0.002003 0.144307 0.002003
0.37500 0.159645 0.000782 0.159655 0.000777
0.40625 0.174913 −0.001216 0.174928 −0.001225
0.43750 0.190017 −0.004028 0.190039 −0.004042

Re = 550, κ = 0
DNS LST

β ωr ωi ωr ωi

0.12500 0.039903 −0.005837 0.039925 −0.005827
0.15625 0.052836 −0.004565 0.052845 −0.004550
0.18750 0.066233 −0.003106 0.066234 −0.003093
0.21875 0.079944 −0.001795 0.079938 −0.001787
0.25000 0.093884 −0.000844 0.093876 −0.000841
0.28125 0.107984 −0.000386 0.107975 −0.000387
0.31250 0.122173 −0.000508 0.122164 −0.000515
0.34375 0.136375 −0.001272 0.136367 −0.001285
0.37500 0.150507 −0.002722 0.150501 −0.002740

Re = 800, κ = 0
DNS LST

β ωr ωi ωr ωi

0.12500 0.038241 −0.003809 0.038253 −0.003796
0.15625 0.050511 −0.002203 0.050511 −0.002191
0.18750 0.063164 −0.000613 0.063155 −0.000605
0.21875 0.076112 0.000658 0.076098 0.000659
0.25000 0.089287 0.001430 0.089270 0.001425
0.28125 0.102613 0.001588 0.102596 0.001576
0.31250 0.116005 0.001048 0.115988 0.001030
0.34375 0.129367 −0.000261 0.129351 −0.000271
0.37500 0.142586 −0.002362 0.142573 −0.002395

Table 3. Frequency and growth rate DNS results obtained during linear growth, compared with
linear stability theory (LST) results.

to be linearly stable, again the discrepancy between linear theory and the moderately
resolved DNS results being of the order of a few tenths of a percent.

Having established agreement between the well-accepted eigenvalue problem and
the current DNS results, we turn to comparisons of the latter during linear growth
with the new experimental results for the flow in question obtained by Poll et al.
(1996). In this context we stress that to date all experimental work has provided
information only on the frequency of the observed instability waves. No growth rates
have ever been presented, nor the spatial structure of disturbances. Consequently,
statements on the agreement of the various theories put forward with experiment
are only possible through comparison of the frequency results. This situation is
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Figure 6. Growth rate against frequency of naturally occurring waves predicted by the DNS and
compared with those yielded by temporal and spatial linear stability analyses at Re = 350, κ = 0.18.
Unstable waves have been measured by Poll et al. (1996) having a frequency between the two
vertical lines.

quite unlike the progress that has been made in the classical flat-plate boundary
layer; substantially more experimental information is necessary in the flow under
consideration for further advances in theory.

In figure 5 the wavenumbers of the predicted waves are presented as a function of
their frequency. All three approaches utilized, namely temporal and spatial eigenvalue
problem, and (temporal) DNS, are capable of identifying the unstable mode with high
accuracy; the temporal eigenvalue problem and DNS results agree to 6 significant
places and define a linear relationship between the quantities monitored. Spatial eigen-
value problem results are in line-thickness agreement with the Gaster-transformed
temporal results. Turning to the growth rates of the instability waves predicted, we
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present in figure 6 the frequency range of maximally amplified waves measured by
Poll et al. (1996), between the vertical lines; the width of this area corresponds to
the error bar of the experimental results. Superimposed upon the experimental data
are our results for the eigenproblem as well as the growth rate delivered by DNS.
It may be seen in this figure that the spatial and the Gaster-transformed temporal
results agree very well with each other in both the value of the maximum growth rate
calculated, and the identification of the location, in parameter space, of the branches
of the neutral loop. Line-thickness agreement between the spatial eigenvalue problem
and the transformed temporal eigenvalue problem and DNS results is to be found in
the neighbourhood of the neutral points, while the spatial eigenvalue problem predicts
marginally higher growth rates than those calculated by the temporal approaches at
conditions of maximum growth. It has to be noted that this very good performance
of the Gaster transformation of temporal results is a consequence of the small values
of the growth rates encountered in this problem.

In summary, we have demonstrated that the initial-boundary-value problem for-
mulation (2.7)–(2.15) firstly delivers linear results in remarkable agreement with those
yielded by the eigenvalue problem and secondly is capable of predicting the experi-
mentally observed instability waves of small amplitude in the swept attachment-line
boundary layer. Not only does the agreement between eigenvalue problem and initial-
boundary-value problem results constitute a generalization of the former approach
but it also lends credibility to the proposal that results relevant to experimental
observations may be obtained by studying the nonlinear evolution of linear initial-
boundary-value problem perturbations. The level of agreement shown is actually the
only firm indication that the nonlinear solutions to be obtained in what follows are
of relevance to the physical problem considered.

3. The nonlinear evolution of Görtler–Hämmerlin disturbances in LEBL
flow

We next turn our attention exclusively to the numerical solution of system (2.7)–
(2.15), allowing for mode interaction, and briefly describe the algorithm utilized. The
nonlinear terms RHS1–RHS3 are included in a scheme which simultaneously solves
for a range of wavenumbers of interest at a given Reynolds number value. To this
end, a mapping in the wall-normal direction is incorporated into the finite-difference
numerical solution approach presented in Theofilis (1993), which distributes points
across the layer according to

y = C
y′

1 + C/Ly − y′
(3.1)

with y′ ∈ [0, 1]. Ly is the extent of the calculation domain in the wall-normal direc-
tion, non-dimensionalized with respect to ∆. In view of the stretching transformation,
there is no implementational difficulty in extending the upper limit of the wall-normal
calculation domain far outside the boundary layer so that the imposition of zero-
perturbation boundary conditions is permissible. It is worth noting here that Hall &
Malik (1986) asserted that imposition of zero-perturbation boundary conditions on
the perturbation velocities at the edge of the computational domain y∞ = 15 pro-
duced identical results to those obtained by using the boundary conditions stemming
from the discussion of §2.3. However, we chose the safer option of placing the outer
computational boundary very far from the layer, in view of both the sensitivity of
growth rate results to ‘pinching’ the basic flow and the boundary conditions used. C is
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a parameter used to control the stretching, assuming the value C = 0.5 for the present
calculations. It should be noted at this point that, although there is no real justification
in using numerical schemes of low formal accuracy for stability calculations, the treat-
ment of the wall-normal direction with finite differences alongside the implicit scheme
used for time-integration outlined next differentiate our numerical approach from
that of both Hall & Malik (1986) and Jiménez et al. (1990) and we wish to maintain
our numerical methods as distinct as possible from those of other investigators.

The spanwise direction along the attachment line was treated pseudospectrally,
employing a Fourier expansion over a periodicity length Lz . This approach is dictated
by the flow physics, namely the homogeneity of the flow in this direction. Aside
from the superior accuracy properties of a spectral expansion compared to a finite-
difference treatment, the former has the added advantage of being ideally suited for
mode interaction studies. Nonlinearities were evaluated by transform methods, with
dealiasing incorporated (but not necessarily used; details follow). Fast as well as
direct Fourier transforms have been used and the Hermitian property of the spectral
space solution has been exploited in order to keep the computing cost to a minimal.
Time integration was performed by a second-order-accurate Crank–Nicolson scheme,
in view of the time-step limitations imposed by the CFL condition in conjunction
with the fine wall-normal resolution, were an explicit scheme to be utilized. Vector
implementation of library software (Numerical Algorithms Group, 1992) was utilized
for the residual calculations.

It is noted that use of an implicit scheme for time integration was initially expected
to result in an algorithm more expensive overall than that resulting from utilization
of a fully explicit scheme, especially if long-time integration were to be performed.
The rather small values of y2 shown in table 2, however, suggest that a scheme
combining explicit and implicit time integration is probably a better candidate than
a fully explicit scheme in order to replace the Crank–Nicolson scheme used here;
factors such as hardware architecture and library software implementation may also
play a role in such a decision, which would only be taken if the present algorithm
were to be extended to three dimensions. At present, we are only interested in the
early-time results, as the two-dimensional model considered in this paper does not
permit following the flow into turbulence, and the implicit time integration was found
to perform quite adequately. The reader is referred to Duck & Burggraf (1986) as
well as Theofilis (1993) for further details on the numerical algorithm.

The solution is initially forced by utilizing the wall-normal perturbation velocity
component v̂∗(y = 0, β, t) in a way such that two physical situations may be modelled.
We take v̂∗(0) to be of the generic form

v̂∗(y = 0, β, t) = ε H0(t) F(t) e−β
2

. (3.2)

In both cases ε is an O(1) amplitude parameter, utilized to control the magni-
tude of the forcing applied to the normal component of the velocity. The functional
dependence F(t) is utilized to differentiate between the modelled cases; the specific
forms will be discussed below. In order to avoid potentially slower than exponential
convergence, had we used a more involved dependence of v̂∗(y = 0, β, t) on the span-
wise wavenumber, we adhered to the simple error-function type of excitation. Finally,
H0(t) is a unit step function indicating the finite startup time of our calculations,
defined by

H0(t) =

{
0, t < 0
1, t > 0.
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Figure 7. Wave emerging at Re = 550, β = 0.3. In (a) and (b), respectively, real and imaginary
parts of perturbation wall shear ûy against time.

A comment is in order here regarding the increasing magnitude of the excitation.
One has to ensure that the excitation is introduced into the flow smoothly in time
so as to avoid numerical instability problems at the early stages of the calculations.
As ε is increased, this requirement translates into ever smaller initial time steps,
rendering the numerical solution ever more expensive. The calculations are stopped
when converged results for the growth rates of the two-dimensional instability waves
have been obtained, usually after a small number of linear wave periods.

In the results that follow, typically, a (Ny = 151×Nz = 256) grid has been utilized,
stretched in the normal direction so as to place the first field point at y2 ≈ 10−3

away from the wall, while a zero-perturbation boundary condition was imposed
at y∞ = 100. The basic flow was obtained in this domain on O(105) uniformly
distributed nodes. The result was interpolated onto the calculation grid using cubic
splines for reasonable accuracy; integral flow quantities were monitored and nodes on
the calculation grid were distributed such that approximately eight significant figures
in quantities such as displacement thickness and shape factor were preserved between
the two grids.

The results of the linear and the nonlinear versions of the system (2.7)–(2.12)
have been compared extensively against each other, using the jet-excitation form
presented in the next section. A typical result is presented in figure 7: after some
initial transient the solution at each wavenumber assumes the form of a wave, which
may be compared to the predictions of linear theory. Values for the frequency Re{ω}
and the growth rate Im{ω} are calculated either through the time signal of a wall
shear in, say, spectral space using

ω =
1

û∗y

dû∗y
dt

(3.3)

with û∗y = ∂û∗/∂y (y = 0, z = z0, t) or, equivalently, through monitoring a measure of
the disturbance energy

E(β, t) =

∫ y∞

0

{û2 + v̂2 + ŵ2} dy (3.4)



212 V. Theofilis

Mode number

Spanwise
direction

–10

–8

–6

–4

–12

–14

–16
0 5 10 15 20 25 30 35 40

ln (E )

Figure 8. Spanwise resolution quality test.

and calculating the slope of the function

ln (E(t))1/2,

the two definitions yielding identical results; details may be found in Appendix B. The
quantity defined in (3.4) is, additionally, significant in that it measures the strength
of an individual Fourier component and, as such, may be monitored in relation
to resolution requirements of the simulation. Such a study has been done in the
course of the runs presented next and a typical result is presented in figure 8. Worth
noticing here are firstly, the linear dependence of the logarithm of energy against
mode number typical of spectral simulations. Secondly, it has been demonstrated (e.g.
Canuto et al. 1988) that a minimum requirement for reliability of results obtained
in a transition simulation is the separation of the energy, defined in (3.4), of the
most-energetic from that of the least-energetic (Fourier) modes by at least eight
orders of magnitude. More than ten orders of magnitude separation is demonstrated
in figure 8; moreover, the typical tail in the energy spectrum which denotes imminent
loss of accuracy due to accumulation of energy in the high-wavenumber region is
absent from our calculations. As a consequence, it is irrelevant to actually invoke
the dealiasing option in our simulations, since all scales are well resolved, resolution
being far from marginal.

Turning to comparisons between the linear and nonlinear versions of (2.7)–(2.12) we
first note that linearized results may be obtained at single values of the wavenumber
β at a cost slightly higher than that of the eigenproblem. In contrast, the nonlinear
version of (2.7)–(2.12) is orders of magnitude more expensive on two counts. Firstly,
the solution has to be obtained simultaneously for the full wavenumber range and
secondly, the nonlinearities mandate iterations at each time step. Owing to the cost
of the latter, a limited number of comparisons between the linear and the nonlinear
forms of (2.7)–(2.12) was performed. A typical result for ω at Re = 590, β = 0.3
is presented in figure 9. It may be observed that both the time history and, more
importantly, the converged result for both the frequency and the growth rate history of
the wave predicted by the two schemes follow each other very closely. The dependence
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Re = 590, t = 400.

of ωi on β at a particular flow condition is presented in figure 10. The amplitude
of initial excitation ε has, of course, been kept the same in the two schemes and is
taken to be of small magnitude in order for comparisons to be possible. The absence
of interaction in the linear version of the initial-boundary-value problem results in
unphysical results being obtained at the limit of very large time since there is no
mechanism to control the linearly predicted exponential growth of disturbances. In
contrast the nonlinear initial-boundary-value problem system produces disturbances
that may interact and are seen, as time grows, to saturate; such a behaviour is
presented in figure 11. In what follows, we focus exclusively on nonlinear initial-
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boundary-value problem solutions which have been obtained utilizing two forms of
initial excitations described below.

3.1. A jet issuing from the wall

Taking the function F(t) in (3.2) to be smoothly growing and decaying in time, such
as

F(t) = tanh2(t) (1− tanh2(t)), (3.5)

we enforce initial conditions on the initial-boundary-value problem which model
the physical situation of a jet issuing from the wall. At Re = 800, we obtained a
numerical solution subject to this initial condition and the perturbation energy has
been monitored and plotted at ε = 1 in figure 12. Observations based on the results
of this figure are, firstly, that the typical dependence of perturbation energy on time is
present in our calculations; after an initial dip a linear regime follows. Secondly, the
wavenumber region considered contains all unstable wavenumbers at this Reynolds
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Re = 800.

number; the exact location of Branch I and Branch II may be obtained as the
projection on the wavenumber axis of the curves E(t) = const.

By experimenting with ε, nonlinear solutions have been obtained at Re = 800 that
are discussed next. We present in figure 13 the (nonlinear) time evolution of E in (a)
and the corresponding growth rate in (b) and superimpose the respective linear results
pertinent to wavenumbers in the neighbourhood of Branch I. It may be observed that
a systematic departure exists between the linear and nonlinear results; this departure
is a consequence of increasing ε and is systematically to be observed as this imposed
amplitude of excitation of the form (3.2) is increased. Care should be taken, in this
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context, in the interpretation of ε when attempting to compare with experiments,
where usually ‘amplitude’ denotes some quantity related to linear unstable waves, for
example the r.m.s. value of a linear perturbation. We present in figure 14 at ε = 10 the
growth rates pertinent to nonlinear perturbations of wavelengths 2π/β as function of
β at Re = 800 and compare with the linear result. Observations of significance are
the following.

Firstly, nonlinear equilibrium solutions are obtained (corresponding to the zero-
growth-rate nonlinear results in figure 14) that bifurcate supercritically from Branch
I and subcritically from Branch II, as the weakly nonlinear analysis of Hall & Malik
(1986) predicted; such a behaviour was also observed in the computations of Jiménez
et al. (1990). Secondly, no appreciable difference of the level of the maximum growth
rate may be seen between the linear and the nonlinear results: at Re = 800 the
nonlinear solution at ε = 10 delivers practically the same maximum growth rate as
the linear result. The spatial structure of perturbations at maximum growth conditions
is presented in figure 15; the different rate of decay at infinity for the streamwise and
normal perturbation velocities, typical of incompressible Navier–Stokes simulations
and also predicted by the eigenvalue problem, is also exhibited in these nonlinear
results.

Calculations performed at ε = 10 and Reynolds numbers Re = 600, 700 and
Re = 900, as well as the result of figure 14 are superimposed upon the linear
results and presented in figure 16. Only growing waves are presented (ωi > 0) and
it may be inferred from the dependence of the maximum growth rate at a given
Reynolds number on Re that in the present nonlinear results the possibility of a
(nonlinear) critical Reynolds number lower than that delivered by the linear analysis
is excluded. As discussed already, the experimentally observed naturally occurring
linear instability waves are located in the neighbourhood of Branch I. This is unlike
the classical Blasius boundary layer, where the experimentally observed instabilities
peak between the lines of maximum amplification rate and maximum amplitude
ratio. In a nonlinear framework, the theory of Hall & Malik (1986) demonstrated
that, apart from a small interval near the tip of the neutral loop, the solution
bifurcates supercritically from Branch I and subcritically from Branch II. The former
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solutions being stable, it was pointed out that the experimentally observed waves
also originated at Branch I. The present calculations suggest that at nonlinear levels
these waves have a maximum amplification rate curve which lies very close to the
experimentally observed waves (cf. figure 17). Such solutions render the LEBL flow
analogous to the classical incompressible flat-plate flow in terms of the location, in
parameter space, of the experimentally observed waves.

Turning to the question of subcriticality, it is of interest to examine the conjecture
of the absence of growing solutions below the linear critical Re, either by imposing
larger initial disturbances and/or by permitting longer integration times than those
currently used (suggested by the linear problem and also used by Hall & Malik,
1986); a solution departing from the linear behaviour, if supported by the system
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(2.7)–(2.15), is expected to become increasingly apparent as ε is increased (also, as
time progresses). Results at the subcritical Re = 550 were obtained for a succession
of initial excitation amplitudes, ε = 1, 5, 10 and 15. The growth rates were plotted
against time and, omitting the early transient behaviour for clarity, are presented in
figure 18. The effect of an increasing amplitude of the initially imposed excitation
ε is that, in the process of converging, the growth rates of the instability waves
present in the flow are positive for increasingly longer times, indicating growth.
This behaviour is absent in the linear result; in the linear case a converged result
corresponding to a decaying wave is quickly obtained. However, it may be seen in
figure 18 that even the highest ε calculation performed eventually produces results
that fall back to growth rates of the sign predicted by linear theory. This linear
result may be inferred on this curve by the converged value of the ε = 1 calculation.
Figure 19 is a plot of growth rates against wavenumber and it may be seen that
both the maximally and all less-amplified modes at Re = 550, ε = 15 are, in
fact, all damped. It is interesting to compare these nonlinear results to the linear
predictions of table 3. The result of main importance with respect to subcritically
growing solutions is the level of the maximum value of the damping rate. It may
be seen in figure 19 that the value delivered by the nonlinear calculation is ωi ≈
−4.1× 10−4 as opposed to a value of ωi ≈ −3.9× 10−4 yielded by the linear version
of the code. Not only does the nonlinear solution at these parameters correspond to
damping waves but it turns out that these waves are more stable than their linear
counterparts.

The nonlinear curve in figure 19 has departed from the linear result in the manner
qualitatively predicted in figures 14 and 16. A quantitative difference that exists
between the results of figures 14 and 19 is worthy of discussion.† Decaying waves
predicted by a nonlinear calculation at a given point in (β, ωi) parameter space may in
time fall to linear levels; provided there is sufficient integration time for the nonlinear
solution, the linear and nonlinear dependencies of growth rates on wavenumber

† Thanks are due to a Referee for pointing out this subtle and important point.
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will eventually agree at this point. In this respect further integration in time of the
nonlinear flow-field for Re = 800, presented in figure 14, may result in a neutral
loop which is wider than the respective linear loop at this linearly unstable Reynolds
number. By contrast, the nonlinear calculation presented in figure 19 already delivers
a branch I which largely agrees with the respective linear result and the only further
possibility for the nonlinearly decaying solution in the neighbourhood of branch II
is to fall back to the linear result. This scenario would certainly hold true had we
introduced disturbances at small amplitudes into the nonlinear code and integrated in
time until disturbances reached nonlinear levels. When we followed such an approach
the discrepancy between the linear and nonlinear neutral loops obtained was negligible
(cf. figures 9, 10 and 22). In the runs where a large value of ε was used to introduce
nonlinear disturbances from the beginning of the calculation, on the other hand, it
is unclear how the nonlinear results relate to those obtained using a low ε value; it
may be that the nonlinear solution has already been attracted away from its linear
counterpart from the early stages of the calculation.

The central question addressed, however, namely whether nonlinear subcritically
growing solutions exist, can be answered by reference to the maximum value of ωi
obtained from its dependence on β. This is at the levels predicted by the linear
result, irrespective of the ε value utilized. Consistently with the solutions to the
present two-dimensional problem obtained by Jiménez et al. (1990) and unlike the
numerical results in the work of Hall & Malik (1986), no two-dimensional subcritical
states have been found. In this light, the observation of subcritical turbulence in
the DNS of Spalart (1988) and the analogous result of Corral & Jiménez (1994)
must be interpreted as a consequence of the three-dimensionality permitted in their
DNS codes. A viscous mechanism analogous to the inviscid one suggested by Hall
& Seddougui (1990) might be examined with respect to the breakdown of potentially
existing nonlinear equilibria to turbulent flow in the attachment-line boundary layer.
Such a conjecture, of course, requires theoretical foundation and, at the very least,
numerical verification that no DNS to date has provided.
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3.2. A model for the vibrating ribbon

We now present a final attempt to investigate the possibility of nonlinear interactions
causing the flow to depart from the behaviour predicted by linear theory. While model-
ling the vibrating ribbon technique, used in experiments, requires (three-dimensional)
spatial simulations, we obtain here solutions subject to the form of forcing

F(t) = sin (ωr(β) t) . (3.6)

In this manner, each wavenumber β may be excited individually, with an arbitrarily
chosen frequency ωr . Here we choose to force each mode by its corresponding linear
least-stable frequency. This may be achieved in a number of ways. The initial-
boundary-value problem approach may be utilized in order to obtain the function
Re{ω} ≡ ωr(β), after transients of the solution have subsided; such an approach is
attractive since the converged results of the scheme in question contain the functional
dependence of frequency and growth rates on the spanwise wavenumber at a given
Reynolds number. Alternatively, we utilize results of the solution to the eigenvalue
problem presented in §2.3.

At Re = 550, in view of the strongly damped nature of the linear modes outside
this range, we focus on β ∈ [0.15, 0.45], setting F(t) outside this range identically
equal to zero, which amounts to exciting only the least-stable linear modes. We first
ensure that no numerical artifacts are introduced by the alteration of the forcing
function. To this end, (nonlinear) numerical solutions are obtained under a succession
of the forcing functions (3.6) and (3.5); the result is presented in figure 20. At this
set of parameters a neutral wave is seen to be established and sustained for as long
as the forcing (3.6) is maintained. The ribbon-like forcing (3.6) is then removed and
two courses of action are taken. The flow is permitted to settle without any further
forcing, or the forcing (3.5) is reinstalled. Despite repetition at a number of initial
amplitudes ε = 0.01, 0.1, and 1, we observed that the forcing (3.6) always resulted in
neutral solutions and, subsequently, the growth rate results predicted by (3.5) (and
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approximated by linear theory) were eventually obtained, namely decaying waves.
Under no conditions were we able to reproduce numerically the solutions reported
by Hall & Malik (1986).

3.3. The effect of suction

A final question raised by weakly nonlinear theory is whether suction is an effective
means of control of instability. Although it increases the critical Reynolds num-
ber, suction makes the flow more susceptible to subcritical disturbances (Hall &
Malik 1986). Countering this theoretical argument the three-dimensional nonlinear
computations of Spalart (1988) demonstrated that suction is an effective method of
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stabilizing disturbances. We address this question in the framework of the present
nonlinear initial-boundary-value problem formulation.

Simulations were performed at κ = −0.1, and two values of Reynolds number
Re = 800 and Re = 1200 which correspond, respectively, to linearly stable and
linearly unstable conditions; we present the results in figures 21 and 22. In figure
21(a) the time evolution of the perturbation energy at β = 0.3 is presented for both
Reynolds numbers. By the end of the time integration the flow is seen to have
settled, at least qualitatively, to the behaviour predicted by linear theory; in figure
21(b) the respective growth rates confirm this assertion. In figure 22 the growth rate
dependence on wavenumber is presented, as obtained at the end of both simulations.
Superimposed is the linear result obtained by the linearized version of the code.
Higher ε values were not considered in this context but, at least up to the time
considered, the nonlinear response of the flow to suction in the parameter range
considered is seen to be identical to that which linear theory predicts.

4. Discussion
To date there exists no experimental information on growth rates or spatial structure

of eigenfunctions pertinent to linear instability in the swept attachment-line boundary
layer. It may, therefore, appear questionable whether nonlinear theoretical studies
on the basis of the Görtler–Hämmerlin assumption on linear disturbances should
be pursued. A comprehensive comparison of the possible two-dimensional linear
approaches is presented, however, which further establishes the ability of the GH
linear model to deliver information on the linear disturbances in two ways. First,
we demonstrate that the eigenvalue problem and initial-boundary-value problem
formulations deliver identical results, the latter at the limit of small perturbations
and having the obvious advantage of permitting nonlinear studies. Second, we show
that the range of frequencies of unstable waves measured in recent experiments
corresponds to the neighbourhood of maximally amplified linear GH disturbances.
Nonlinear equilibria established on the basis of GH disturbances may, therefore, be
considered as relevant theoretical models for the description of flow behaviour.

Contradictory evidence exists in the literature regarding the role of nonlinear
subcritical disturbances arising from linear GH perturbations. We have addressed
this issue from the point of view of numerical solution to the initial-boundary-value
problem problem, utilizing general forms of input disturbances at varying amplitudes
to excite the flow. We adhered to the GH assumption in order to be able to, firstly,
directly compare our results with the relevant investigations and, secondly, draw
conclusions purely on the role of nonlinearity. At low amplitudes of the imposed initial
disturbance, instability waves are seen to emerge in our simulations that compare well
with those predicted by the eigenvalue problem approach. At supercritical conditions,
as the size of the input disturbance is increased, nonlinear solutions have been
obtained that bifurcate from the linear loop in the manner predicted by earlier
analysis and observed in simulations. The nonlinear loops obtained are all confined in
a thin region around the linear loop; a consequence of the departure of the nonlinear
neutral loops from their linear counterpart is that the maximum amplification rate of
the nonlinear neutral curve lies very close, in parameter space, to the experimentally
observed waves, a behaviour analogous to that observed experimentally in Blasius
flow.

At the subcritical Reynolds number Re = 550 extensive numerical experimentation
has been performed in order for growing solutions to be identified and conditions for
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equilibrium to be established. General disturbances were introduced at increasingly
higher amplitudes into the flow; despite large integration times the growth rates of
the instability waves established at this Reynolds number correspond to decaying
perturbations. Combined with the nonlinear maximum amplification rate dependence
on Re, obtained herein, this result suggests the absence of subcritical instability of
the nonlinear two-dimensional model LEBL flow. This prediction is in line with the
analogous result of Jiménez et al. (1990) and in contrast to earlier numerical solutions
of the same model problem. The reported existence of subcritical nonlinear equilibria
in the work of Joslin (1995) may be reconciled with the present results on the
grounds of the three-dimensionality of Joslin’s code. Indeed, three-dimensionality has
permitted (subcritical) breakdown to turbulence in the earlier DNS of both Spalart
(1988) and Corral & Jiménez (1994).

The present contribution has demonstrated that the framework of Görtler–
Hämmerlin disturbances is too narrow for subcriticality of the LEBL flow to be
reproduced. Inclusion of three-dimensionality should be the essential departure point
for any future theoretical model that aims to explain subcritical instability and tur-
bulence in the swept attachment-line boundary layer.
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Netherlands. An Alexander von Humboldt research fellowship enabled its completion
at DLR Göttingen. The able advice provided by Dr P. W. Duck during the early
stages of the present work is gratefully acknowledged. Discussions with Professors D.
I. A. Poll and J. Jiménez are kindly appreciated. Computations were performed on
the Amdahl VP1200 at the Manchester Computing Centre, on the Cray Y-MP4/464
at Stichting Academisch Rekencentrum Amsterdam under NCF grant 93.0138, and
on the NEC-SX3 at DLR Göttingen.

Appendix A. Collocation solution of the temporal eigenvalue problem
The discrete form of (2.16)–(2.17) may be obtained by appropriately specifying a

mapping transformation for the independent variable η ∈ [0,∞) onto the standard
Chebyshev domain x ∈ [−1, 1]. We solved (2.16)–(2.17) using up to 100 collocation
points redistributing the standard Chebyshev Gauss–Lobatto points xj on to the
calculation grid ηj according to

ηj = l
1− xj

1 + s+ xj
(A 1)

with l a length scale and s = 2l/η∞. The location where the calculation domain
for the basic flow is truncated is denoted by η∞. Incorporating the metrics of the
transformation into the Chebyshev collocation derivative matrices (Boyd 1989),

D
(1)
k,j =



1
6
(2N2 + 1), j = k = 0

− xj

2(1− x2
j )
, j = k

ck

cj

(−1)j+k

xk − xj
, j 6= k

− 1
6
(2N2 + 1), j = k = N
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with

cj =

 2, j = 0
1, 1 6 j 6 N − 1
2, j = N

we write (2.16)–(2.17) as a generalized eigenvalue problem

Aφ = cBφ. (A 2)

Denoting the Chebyshev collocation derivative matrix, modified by incorporation

of the metrics, by D̂, the entry ai,j of A, for example, is given by

ai,j =


(
D̂2
i,j − viD̂i,j − β2 − 2ui − iβRewi

)
û− (D̂i,jui)v̂, i = j; i = j = 0, n(

D̂2
i,j − viD̂i,j

)
û, i 6= j; i = j = 0, n

as dictated by the minimization of the residuals. Six rows of both arrays A and B
have to be reserved for the imposition of the boundary conditions associated with
the problem.

Appendix B. Extraction of frequency and growth rate information from
DNS data

We employed three different methods for the numerical calculation of the frequency
and the growth rates. These exploit both physical information of the solution sought
as well as technical properties of the algorithm developed. Past the early transient state
the solution settles to that predicted by linear stability theory (cf. figure 7). During
linear growth/decay a (complex) Fourier component of any flow quantity q̂∗(β, y, t)
takes the form q̂∗(β, y, t) = q̃∗(y) exp {i(βz − ωt)}. Owing to the linear behaviour of
the solution in this regime, individual wavenumber β values may be monitored in
isolation from all other wavenumbers, and the solution at a given β may be written
as q̂∗b(y, t) = q̃∗(y) exp {iωt}. Frequency and growth rate information may then be
calculated by any of the following methods.

Method 1: ω = (1/q̂∗b) dq̂∗b/dt.
The Fourier components q̂∗b of any flow quantity for which we solve are available at
all times and, subject to availability of the derivative dq̂∗b/dt, the frequency and the
growth rates of the instability wave are, respectively, Re{ω} and Im{ω}.
Method 2: ω = {ln q̂∗b(t+ ∆t)− ln q̂∗b(t)} /(i∆t).
The necessary elements here are the Fourier components of the solution at two
successive times t and t+ ∆t.

Method 3: Im{ω} = dFb(t)/dt

where Fb(t) = ln(Eb(t))
1/2 and Eb(t) =

∫ y∞

y=0

{û2 + v̂2 + ŵ2} dy.

When using methods 1 and 2 one may arbitrarily choose to monitor the value of
any component of the solution q̂∗b at any location y along the entire domain in the
wall-normal direction, or take q̂∗b to be a physical quantity which may be constructed
using information at a fixed β location and time (e.g. wall shear). Method 3, on the
other hand, incorporates information from all y-locations.

The numerical calculation of the time derivatives which appear in methods 1 and
3 takes advantage of the fact that a constant time step is utilized in the implicit
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m Cm,n−5 Cm,n−4 Cm,n−3 Cm,n−2 Cm,n−1 Cm,n

2 −1 4 −3
3 2 −9 18 −11
4 −6 32 −72 96 −50
5 240 −150 400 −600 600 −274

Table 4. Coefficients for numerical calculation of first derivative with second-to-fifth-order
accuracy using backward differences on a uniform grid.

m ωr × 10 ωi × 103

Method 1 2 1.2547832 2.5084320
3 1.2543749 2.5039661
4 1.2543736 2.5049228
5 1.2543738 2.5049271

Method 2 1.2543738 2.5049262
Method 3 2 2.5049265

3 2.5049265
4 2.5049265
5 2.5049265

Table 5. Frequency and growth rates obtained in DNS by the three methods at κ = 0.18,
Re = 350, β = 0.3053125 and Ny = 251.

scheme for time integration to evaluate derivatives f
′

at time level n of a function f
whose values are known at times n, . . . , n− m using the mth-order-accurate one-sided
(backward) schemes (e.g. Abramowitz & Stegun 1970)

f
′

n =
1

m!(∆t)

n∑
i=n−m

Cm,ifi; m = 2, . . . , 5,

with the coefficients of the differentiation presented in table 4.
Results of application of these schemes to the calculation of the time derivatives

appearing in methods 1 and 3 are presented in table 5. It is clear that only method
1 is affected by the order of accuracy of the scheme used. A second-order-accurate
scheme used in this method delivers the first four digits of the converged result while
at least a fourth-order-accurate scheme is necessary to extract the converged result
from the DNS data. The result delivered by methods 2 and 3, on the other hand, is
the value to which method 1 converges; it is unaffected by the order of accuracy of
differentiation in method 3. This difference in behaviour between methods 1 and 3
may be attributed to the fact that the former does not assume any particular form for
the behaviour of the solution, in contrast to the latter which implicitly incorporates
the exponential behaviour of the DNS solution in the linear regime. For the same
reason method 2 also is capable of delivering the converged frequency and growth
rate information using a simple algebraic operation on the DNS data. Based on these
considerations we have used method 2 to evaluate ω at the linear regime and method
3 to cross-validate the results presented.

Incidentally, we note that methods 2 and 3 are also straightforwardly applicable to
an algorithm which uses explicit time integration since they are capable of delivering
results using information from two successive time levels alone; consequently methods
2 and 3 are unaffected by a possibly variable time step that the CFL condition imposes
in explicit time-integration schemes.
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